Energy Performance Certificate # Address of dwelling and other details 2F1. 9 RAEBURN PLACE, EDINBURGH, EH4 1HU Dwelling type: Name of approved organisation: Membership number: Date of certificate: Reference number: Type of assessment: Total floor area: Main type of heating and fuel: Top-floor flat Elmhurst Energy Systems Ltd EES/008320 15 April 2011 1619-5724-0000-0537-8996 RdSAP, existing dwelling 80 m² Boiler and radiators, mains gas # This dwelling's performance ratings This dwelling has been assessed using the RdSAP 2005 methodology. Its performance is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO₂) emissions. CO₂ is a greenhouse gas that contributes to climate change. #### **Energy Efficiency Rating** Current Potential Very energy efficient - lower running costs (92 plus) B (81-91) (69-80)70 66 D (55-68)(39-54)(21 - 38)G 1-20) Not energy efficient - higher running costs **EU Directive** Scotland 2002/91/EC The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment. Approximate current energy use per square metre of floor area: 272 kWh/m² per year Approximate current CO2 emissions: 46 kg/m² per year #### Cost effective improvements Below is a list of lower cost measures that will raise the energy performance of the dwelling to the potential indicated in the tables above. Higher cost measures could also be considered and these are recommended in the attached energy report. 1 Increase loft insulation to 270 mm 2 Upgrade heating controls A full energy report is appended to this certificate Remember to look for the energy saving recommended logo whe It's a quick and easy way to identify the most energy-efficient product Information from this EPC may be given to the Energy Saving Trust to provide householders on financial help available to improve home energy efficiency 15 April 2011 RRN: 1619-5724-0000-0537-8996 Energy Performance Certificate ### **Energy Report** The Energy Performance Certificate and Energy Report for this dwelling were produced following an energy assessment undertaken by a member of Elmhurst Energy Systems Ltd. This is an organisation which has been approved by the Scottish Ministers. The certificate has been produced under the Building (Scotland) Amendment Regulations 2006 and a copy of the certificate and this energy report have been lodged on a national register. Assessor's name: Mr. Allan H Thomson Company name/trading name: Barr Brady Address: 31 Albany Street, Edinburgh, EH1 3QN Phone number: 01698 421214 Fax number: 0131 478 4339 E-mail address: allan.thomson@barrbrady.co.uk Related party disclosure: No related party ## Estimated energy use, carbon dioxide (CO2) emissions and fuel costs of this home | | Current | Potential | |-------------------------------------|---------------------|---------------------| | Enorgy USA | 272 kWh/m² per year | 238 kWh/m² per year | | Energy use Carbon dioxide emissions | 3.7 tonnes per year | 3.2 tonnes per year | | | £54 per year | £54 per year | | Lighting | £592 per year | £518 per year | | Heating | £121 per year | £114 per year | The figures in the table above have been provided to enable prospective buyers and tenants to compare the fuel costs and carbon emissions of one home with another. To enable this comparison the figures have been calculated using standardised running conditions (heating periods, room temperatures, etc.) that are the same for all homes, consequently they are unlikely to match an occupier's actual fuel bills and carbon emissions in practice. The figures do not include the impacts of the fuels used for cooking or running appliances, such as TV, fridge etc.; nor do they reflect the costs associated with service, maintenance or safety inspections. Always check the certificate date because fuel prices can change over time and energy saving recommendations will evolve. ### About the building's performance ratings The ratings on the certificate provide a measure of the building's overall energy efficiency and its environmental impact, calculated in accordance with a national methodology that takes into account factors such as insulation, heating and hot water systems, ventilation and fuels used. Not all buildings are used in the same way, so energy ratings use 'standard occupancy' assumptions which may be different from the specific way you use your home. Buildings that are more energy efficient use less energy, save money and help protect the environment. A building with a rating of 100 would cost almost nothing to heat and light and would cause almost no carbon emissions. The potential ratings in the certificate describe how close this building could get to 100 if all the cost effective recommended improvements were implemented. # About the impact of buildings on the environment One of the biggest contributors to global warming is carbon dioxide. The way we use energy in buildings causes emissions of carbon. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions and other buildings produce a further one-sixth. The average household causes about 6 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. You could reduce emissions even more by switching to report can reduce emissions and protect the environment. You could reduce emissions even more by switching to report can reduce emissions and protect the environment. You could reduce emissions even more by switching to report can reduce emissions and protect the environment. Some everyday measures that will save money, improve renewable energy sources. In addition there are many simple everyday measures that will save money, improve renewable energy sources the impact on the environment. Some examples are given at the end of this report. RRN: 1619-5724-0000-0537-8996 Recommendations # summary of this home's energy performance related features The table below gives an assessment of the key individual elements that have an impact on this home's energy and environmental performance. Each element is assessed by the national calculation methodology against the following scale: Very poor / Poor / Average / Good / Very good. The assessment does not take into consideration the physical condition of any element. 'Assumed' means that the insulation could not be inspected and an assumption has been made in the methodology based on age and type of construction | Elements | Description | Current pe | Current performance | | |-----------------------|--|-------------------|---------------------|--| | | | Energy Efficiency | Environmental | | | Nalls | Sandstone, as built, no insulation (assumed) | Poor | Poor | | | Roof | Pitched, 100 mm loft insulation | Average | Average | | | Floor | (other premises below) | | | | | Windows | Single glazed | Very poor | Very poor | | | Main heating | Boiler and radiators, mains gas | Good | Good | | | Main heating controls | Programmer, TRVs and bypass | Average | Average | | | Secondary heating | Room heaters, mains gas | | | | | | From main system | Good | Good | | | Hot water | Low energy lighting in 80% of fixed outlets | Very good | Very good | | | Lighting | | D 66 | | | | Current energy | efficiency rating | | D 61 | | Current environmental impact (CO2) rating ## Low and zero carbon energy sources These are sources of energy (producing or providing electricity or hot water) which emit little or no carbon dioxide into the atmosphere. There are none applicable to this home. 15 April 2011 RRN: 1619-5724-0000-0537-8996 Recommendations # Recommended measures to improve this home's energy performance The measures below are cost effective. The performance ratings after improvement listed below are cumulative, that is they assume the improvements have been installed in the order that they appear in the table. However you should check the conditions in any covenants, warranties or sale contracts, and whether any legal permissions are required such as a building warrant, planning consent or listed building restrictions. | ower cost measures (up to £500) | Typical savings per year | Performance ratings after improvement | | |---|--------------------------|---------------------------------------|----------------------| | | | Energy efficiency | Environmental impact | | Increase loft insulation to 270 mm | £49 | C 69 | D 64 | | 2 Upgrade heating controls | £33 | C 70 | D 66 | | Sub-total | £82 | | | | Higher cost measures (over £500) | | | | | 3 Replace boiler with new condensing boiler | £46 | C 73 | C 69 | | Total | £128 | | | | Potential energy efficiency rating | | C 73 | | | Potential environmental impact (CO2) rating | | | C 69 | #### Further measures to achieve even higher standards The further measures listed below should be considered in addition to those already specified if aiming for the highest possible standards for this home. Some of these measures may be cost-effective when other building work is being carried out such as an alteration, extension or repair. Also they may become cost-effective in the future depending on changes in technology costs and fuel prices. However you should check the conditions in any covenants, warranties or sale contracts, and whether any legal permissions are required such as a building warrant, planning consent or listed building restrictions. | 4 Secondary glazing to single glazed windows | £55 | C 76 | C 72 | |---|-----|------|------| | 5 50 mm internal or external wall insulation | £86 | C 80 | C 78 | | Enhanced energy efficiency rating | | C 80 | | | Enhanced environmental impact (CO ₂) rating | | | C 78 | Improvements to the energy efficiency and environmental impact ratings will usually be in step with each other. However, they can sometimes diverge because reduced energy costs are not always accompanied by a reduction in carbon dioxide (CO₂) emissions. April 2011 RRN: 1619-5724-0000-0537-8996 Recommendations # About the cost effective measures to improve this home's performance ratings If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work. ### Lower cost measures (typically up to £500 each) These measures are relatively inexpensive to install and are worth tackling first. Some of them may be installed as DIY projects. DIY is not always straightforward, and sometimes there are health and safety risks, so take advice before carrying out DIY improvements. #### 1 Loft insulation Loft insulation laid in the loft space or between roof rafters to a depth of at least 270 mm will significantly reduce heat loss through the roof; this will improve levels of comfort, reduce energy use and lower fuel bills. Insulation should not be placed below any cold water storage tank, any such tank should also be insulated on its sides and top, and there should be boarding on battens over the insulation to provide safe access between the loft hatch and the cold water tank. The insulation can be installed by professional contractors but also by a capable DIY enthusiast. Loose granules may be used instead of insulation quilt; this form of loft insulation can be blown into place and can be useful where access is difficult. The loft space must have adequate ventilation to prevent dampness; seek advice about this if unsure. Further information about loft insulation and details of local contractors can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk). It should be noted that building standards may apply to this work. #### 2 Heating controls (room thermostat) The heating system should have a room thermostat to enable the boiler to switch off when no heat is required. A competent heating engineer should be asked to do this work. Insist that the thermostat switches off the boiler as well as the pump and that the thermostatic radiator valve is removed from any radiator in the same room as the thermostat. Building regulations may apply to this work, so it is best to obtain advice from your local authority building standards department and from a qualified heating engineer. #### Higher cost measures (typically over £500 each) #### 3 New condensing boiler A condensing boiler is capable of much higher efficiencies than other types of boiler, meaning it will burn less fuel to heat this property. This improvement is most appropriate when the existing central heating boiler needs repair or replacement, but there may be exceptional circumstances making this impractical. Condensing boilers need a drain for the condensate which limits their location; remember this when considering remodelling the room containing the existing boiler even if the latter is to be retained for the time being (for example a kitchen makeover). Building regulations may apply to this work, so it is best to obtain advice from your local authority building standards department and from a qualified heating engineer. #### About the further measures to achieve even higher standards Further measures that could deliver even higher standards for this home. You should check the conditions in any covenants, planning conditions, warranties or sale contracts before undertaking any of these measures. If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work. #### 4 Secondary glazing Secondary glazing is the addition of a second pane of glass inside the existing window. Adding secondary glazing will improve comfort in the home by reducing draughts and cold spots near windows. It may also reduce noise and combat problems with condensation. Installation can be carried out by a competent DIY enthusiast. #### 5 Internal or external wall insulation Solid wall insulation involves adding a layer of insulation to either the inside or the outside surface of the external walls, which reduces heat loss and lowers fuel bills. As it is more expensive than cavity wall insulation it is only recommended for walls without a cavity, or where for technical reasons a cavity cannot be filled. Internal insulation, known as dry-lining, is where a layer of insulation is fixed to the inside surface of external walls; this type of insulation is best applied when rooms require redecorating and can be installed by a competent DIY enthusiast. External solid wall insulation is the application of an insulant and a weather-protective finish to the outside of the wall. This may improve the look of the home, particularly where existing brickwork or rendering is poor, and will provide long-lasting weather protection. Further information can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk). It should be noted that planning permission might be required and that building (standards may apply to this work.