## Energy Performance Certificate

## Address of dwelling and other details

1F2,
22 BROUGHAM STREET, EDINBURGH, EH3 9JH

Dwelling type:
Name of approved organisation:
Membership number:
Date of certificate:
Reference number:
Total floor area:
Main type of heating and fuel:

Mid-floor flat
RICS for Scotland
RICS853415
02 April 2009
9711-9027-1000-0979-0076
$114 \mathrm{~m}^{2}$
Boiler and radiators, mains gas

This dwelling's performance ratings
This dwelling has been assessed using the RdSAP 2005 methodology. Its performance is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide ( $\mathrm{CO}_{2}$ ) emissions. CO 2 is a greenhouse gas that contributes to climate change.


The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

|  | Current | Potential |
| :---: | :---: | :---: |
| Very environmentally friendly - lower CO2 emissions (92 plus) $\square$ |  |  |
| (81-91) |  |  |
| $(69-80)$ |  |  |
| $(55-68)$ |  |  |
| (39-54) $\quad$ 名 |  |  |
| $(21-38)$ |  |  |
| $(1-20)$ |  |  |
| Not environmentally friendly - higher $\mathrm{CO}_{2}$ emissions |  |  |
| Scotland | EU Directive 2002/91/EC |  |

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide ( $\mathrm{CO}_{2}$ ) emissions. The higher the rating the less impact it has on the environment.

Approximate current energy use per square metre of floor area: $178 \mathrm{kWh} / \mathrm{m}^{2}$ per year
Approximate current CO2 emissions: $30 \mathrm{~kg} / \mathrm{m}^{2}$ per year

## Cost effective improvements

Below is a list of lower cost measures that will raise the energy performance of the dwelling to the potential indicated in the tables above. Higher cost measures could also be considered and these are recommended in the attached energy report.

```
1 Low energy lighting for all fixed outlets 2 Upgrade heating controls
```

A full energy report is appended to this certificate

## Energy Report

The Energy Performance Certificate and Energy Report for this dwelling were produced following an energy assessment undertaken by a member of RICS for Scotland. This is an organisation which has been approved by the Scottish ministers. The certificate has been produced under the Building (Scotland) Amendment Regulations 2006 and a copy of the certificate and this energy report have been lodged on a national register.

Assessor's name:
Company name/trading name:
Address:

Phone number:
Fax number:
E-mail address:
Related party disclosure:

Mr. Richard Montgomery<br>Symington Mackell<br>3A Dublin Meuse, Edinburgh, Scotland, EH3 6NW

01314668611
08704864474
richard@symingtonmackell.com

Estimated energy use, carbon dioxide ( $\mathrm{CO}_{2}$ ) emissions and fuel costs of this home

|  | Current | Potential |
| :--- | :---: | :---: |
| Energy use | $178 \mathrm{kWh} / \mathrm{m}^{2}$ per year | $165 \mathrm{kWh} / \mathrm{m}^{2}$ per year |
| Carbon dioxide emissions | 3.4 tonnes per year | 3.1 tonnes per year |
| Lighting | $£ 79$ per year | $£ 59$ per year |
| Heating | $£ 423$ per year | $£ 401$ per year |
| Hot water | $£ 126$ per year | $£ 126$ per year |

Based on standardised assumptions about occupancy, heating patterns and geographical location, the above table provides an indication of how much it will cost to provide lighting, heating and hot water to this home. The fuel costs only take into account the cost of fuel and not any associated service, maintenance or safety inspection. This certificate has been provided for comparative purposes only and enables one home to be compared with another. Always check the date the certificate was issued, because fuel prices can increase over time and energy saving recommendations will evolve.

## About the building's performance ratings

The ratings on the certificate provide a measure of the building's overall energy efficiency and its environmental impact, calculated in accordance with a national methodology that takes into account factors such as insulation, heating and hot water systems, ventilation and fuels used.
Not all buildings are used in the same way, so energy ratings use 'standard occupancy' assumptions which may be different from the specific way you use your home.
Buildings that are more energy efficient use less energy, save money and help protect the environment. A building with a rating of 100 would cost almost nothing to heat and light and would cause almost no carbon emissions. The potential ratings in the certificate describe how close this building could get to 100 if all the cost effective recommended improvements were implemented.

## About the impact of buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The way we use energy in buildings causes emissions of carbon. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions and other buildings produce a further one-sixth.

The average household causes about 6 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. You could reduce emissions even more by switching to renewable energy sources. In addition there are many simple everyday measures that will save money, improve comfort and reduce the impact on the environment. Some examples are given at the end of this report.

## Summary of this home's energy performance related features

The following is an assessment of the key individual elements that have an impact on this home's performance rating. Each element is assessed against the following scale: Very poor / Poor / Average / Good / Very good.

| Elements | Current performance |  |  |
| :--- | :--- | :---: | :---: |
|  |  | Energy Efficiency |  |
| Walls | Sandstone, as built, no insulation (assumed) | Poor | Poor |
| Roof | (another dwelling above) | - | - |
| Floor | (other premises below) | - | - |
| Windows | Fully double glazed | Good | Good |
| Main heating | Boiler and radiators, mains gas | Good | Good |
| Main heating controls | Programmer and room thermostat | Poor | Poor |
| Secondary heating | None | Good | - |
| Hot water | From main system | Good | Good |
| Lighting | Cow energy lighting in $66 \%$ of fixed outlets |  |  |
| Current energy efficiency rating |  | C 72 |  |
| Current environmental impact (CO2) rating |  |  |  |

## Low and zero carbon energy sources

These are sources of energy (producing or providing electricity or hot water) which emit little or no carbon dioxide into the atmosphere. There are none applicable to this home.

## Recommended measures to improve this home's energy performance

The measures below are cost effective. The performance ratings after improvement listed below are cumulative, that is they assume the improvements have been installed in the order that they appear in the table. However you should check the conditions in any covenants, warranties or sale contracts, and whether any legal permissions are required such as a building warrant, planning consent or listed building restrictions.

| Lower cost measures (up to £500) | Typical savings per year | Performance ratings after improvement |  |
| :---: | :---: | :---: | :---: |
|  |  | Energy efficiency | Environmental impact |
| 1 Low energy lighting for all fixed outlets | £16 | C 76 | C 72 |
| 2 Upgrade heating controls | £26 | C 77 | C 74 |
| Sub-total | £42 |  |  |
| Higher cost measures (over £500) |  |  |  |
| 3 Replace boiler with Band A condensing boiler | $£ 78$ | C 80 | C 78 |
| Total | £120 |  |  |
| Potential energy efficiency rating | C 80 |  |  |
| Potential environmental impact ( $\mathrm{CO}_{2}$ ) rating |  |  | C 78 |

## Further measures to achieve even higher standards

The further measures listed below should be considered in addition to those already specified if aiming for the highest possible standards for this home. Some of these measures may be cost-effective when other building work is being carried out such as an alteration, extension or repair. Also they may become cost-effective in the future depending on changes in technology costs and fuel prices. However you should check the conditions in any covenants, warranties or sale contracts, and whether any legal permissions are required such as a building warrant, planning consent or listed building restrictions.

| 450 mm internal or external wall insulation | $£ 84$ | B 84 | B 83 |
| :--- | :---: | :---: | :---: |
| Enhanced energy efficiency rating |  |  |  |
| Enhanced environmental impact (CO2) rating | B 84 |  |  |

Improvements to the energy efficiency and environmental impact ratings will usually be in step with each other. However, they can sometimes diverge because reduced energy costs are not always accompanied by a reduction in carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions.

## About the cost effective measures to improve this home's energy ratings

If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work. -----

## Lower cost measures (typically up to $£ 500$ each)

These measures are relatively inexpensive to install and are worth tackling first. Some of them may be installed as DIY projects. DIY is not always straightforward, and sometimes there are health and safety risks, so take advice before carrying out DIY improvements.

## 1 Low energy lighting

Replacement of traditional light bulbs with energy saving recommended ones will reduce lighting costs over the lifetime of the bulb, and they last up to 12 times longer than ordinary light bulbs. Also consider selecting low energy light fittings when redecorating; contact the Lighting Association for your nearest stockist of Domestic Energy Efficient Lighting Scheme fittings.

## 2 Heating controls (thermostatic radiator valves)

Thermostatic radiator valves allow the temperature of each room to be controlled to suit individual needs, adding to comfort and reducing heating bills provided internal doors are kept closed. For example, they can be set to be warmer in the living room and bathroom than in the bedrooms. Ask a competent heating engineer to install thermostatic radiator valves. Thermostatic radiator valves should be fitted to every radiator except the radiator in the same room as the room thermostat. Remember the room thermostat is needed as well as the thermostatic radiator valves, to enable the boiler to switch off when no heat is required. Building regulations may apply to this work, so it is best to obtain advice from your local authority building standards department and from a qualified heating engineer.

## Higher cost measures (typically over $£ 500$ each)

## 3 Band A condensing boiler

A condensing boiler is capable of much higher efficiencies than other types of boiler, meaning it will burn less fuel to heat this property. This improvement is most appropriate when the existing central heating boiler needs repair or replacement, but there may be exceptional circumstances making this impractical. Condensing boilers need a drain for the condensate which limits their location; remember this when considering remodelling the room containing the existing boiler even if the latter is to be retained for the time being (for example a kitchen makeover). Building regulations may apply to this work, so it is best to obtain advice from your local authority building standards department and from a qualified heating engineer.

## About the further measures to achieve even higher standards

Further measures that could deliver even higher standards for this home. You should check the conditions in any covenants, planning conditions, warranties or sale contracts before undertaking any of these measures. If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work.

## 4 Internal or external wall insulation

Solid wall insulation involves adding a layer of insulation to either the inside or the outside surface of the external walls, which reduces heat loss and lowers fuel bills. As it is more expensive than cavity wall insulation it is only recommended for walls without a cavity, or where for technical reasons a cavity cannot be filled. Internal insulation, known as dry-lining, is where a layer of insulation is fixed to the inside surface of external walls; this type of insulation is best applied when rooms require redecorating and can be installed by a competent DIY enthusiast. External solid wall insulation is the application of an insulant and a weather-protective finish to the outside of the wall. This may improve the look of the home, particularly where existing brickwork or rendering is poor, and will provide long-lasting weather protection. Further information can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk). It should be noted that planning permission might be required and that building standards may apply to this work.

## What can I do today?

Actions that will save money and reduce the impact of your home on the environment include:

- Ensure that you understand the dwelling and how its energy systems are intended to work so as to obtain the maximum benefit in terms of reducing energy use and CO 2 emissions.
- If you have a conservatory or sunroom, avoid heating it in order to use it in cold weather and close doors between the conservatory and dwelling.
- Check that your heating system thermostat is not set too high (in a home, $21^{\circ} \mathrm{C}$ in the living room is suggested) and use the timer to ensure you only heat the building when necessary.
- Turn off lights when not needed and do not leave appliances on standby. Remember not to leave chargers (e.g. for mobile phones) turned on when you are not using them.
- If you're not filling up the washing machine, tumble dryer or dishwasher, use the half-load or economy programme. Minimise the use of tumble dryers and dry clothes outdoors where possible.
- Close your curtains at night to reduce heat escaping through the windows.

